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ABSTRACT 

Let (G, X, x) be  a tr iple consis t ing of a finitely presented  group G, epimor- 

ph i sm  X: G ---* Z,  and  d is t inguished  e lement  x E G such t ha t  X(X) -- 1. 

Given a finite s y m m e t r i c  group St ,  we cons t ruc t  a finite d i rected g raph  

F t ha t  describes the  set Cr  of representa t ions  p: K e r x  --~ Sr as well 

as the  m a p p i n g  a~: Cr  ~ Cr  defined by (axp)(a) = p(x- lax)  for all 

a E K e r x .  T h e  pair ( # r , a x )  has  the  s t ruc tu re  of a shift  of finite type,  

a well-known type  of compac t  0-dimensional  dynamica l  sys tem.  We dis- 

cuss  basic propert ies  and  appl icat ions  of the  representation shift (r az), 

including appl icat ions  to knot  theory. 

I n t r o d u c t i o n  

Assume that G is a finitely presented group and X: G ~ Z is an epimorphism. 

We will denote the kernel of X by K• Efforts to understand the structure of 

K• are hampered by the fact that often this group is not finitely generated. 

Nevertheless, a number of applications of group theory to topology require such 

an investigation. 

An a u g m e n t e d  g r o u p  s y s t e m  is a triple (G, X, x) consisting of a finitely 

presented group G, an epimorphism X: G ~ Z, and a distinguished element 

x E G such that X(x) -- 1. Augmented group systems were previously defined 

and studied in [Sill. In this paper we show that any augmented group system 

(G, X, x) determines a sequence of shifts of finite type (r az), where r is 

any positive integer. The elements of ( ~ ,  az) are the representations of K x 
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in the symmetric group S~. Using the tools of combinatorial group theory we 

give an algorithm for determining the shifts (r a~). Each shift ((I)~, a~) maps 

onto a dynamical system (~)r, &~), the elements of which are the subgroups 

H <_ K x having index [Kx: HI <_ r. Consequently, when ( ~ ,  a~) is finite, K x 

contains only finitely many subgroups of index less than or equal to r. We give 

sufficient conditions in terms of the Bieri-Neumann-Strebel invariant [BiNeSt] 

for the shifts ((I)~, a~) to be finite for all r. This condition depends only on the 

pair (G, X)- In the last section of the paper we use the entropy of the shifts 

((I)~, a~) to define a sequence of numerical invariants for any pair (G, X). For 

the special case of a knot group G and abelianization homomorphism X we obtain 

a sequence of knot invariants that are effectively computable. 

1. Permutation representations 

Recall that a permutation representation of a group K is a homomorphism 

p: K --, S~, where Sr is the symmetric group operating on the set {1 . . . .  , r}. We 

will call p a r e p r e s e n t a t i o n  o f  K in S~. The representation p is t r a n s i t i v e  if 

p(K)  operates transitively on {1 , . . . ,  r}. The following proposition is well known. 

PROPOSITION 1.1: Let K be any group and let r be a postive integer. The 

function ~r: p ~-* {g E K I p(g)(1) = 1} maps the set of  representations p: K --~ S~ 

onto the set of subgroups H <_ K having index [K: HI <_ r. The preimage of any 

subgroup of  index r contains exactly (r - 1)! transitive representations. 

Given any representation p: K --- S~ one can obtain a set of generators for 

the subgroup H = ~r(p) by the following familiar topological method. Let C 2 

be a 2-complex with a single 0-cell v such that lh (C 2, v) ~ K. The complex C 2 

is easily constructed from a presentation (not necessarily finite) for K: oriented 

1-cells in C 2 correspond to generators, oriented 2-cells correspond to relators. 

Use the representation p to build an r-sheeted covering space p: ~2 __, C 2 in the 

following way. The unique 0-cell v is covered by 0-cells Vl , . . . ,  9~. An oriented 

1-cell e is covered by an oriented 1-cell that  travels from vi to vp(e)(0, 1 = 1 , . . . ,  r; 

it will be helpful to label each of these 1-cells by e. Finally, each oriented 2-cell 

of C 2 is covered by r oriented 2-cells in an obvious manner. Let C0 2 be the 

component of ~2 that contains Vl. The projection p induces a monomorphism 

p.: 7r1((~, vl) ~ 7h(C 2, v) with image H.  Projecting generators for lrl(C~, vl) 

produces generators for H.  
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Example  1.2: Let K be the 1-relator group (x ,a  I xax -X  = a2) with represen- 

t a t i onp :  K --* $2 given by x ~ (1,2), a ~ (1). The 1-skeleton of C 2 and 

its covering space ~2 appear in Figure 1. From these we see that  the elements 

a, x a x - l , x  2 generate the corresponding subgroup H < K of index 2. Using the 

relations in K we obtain the more efficient set of generators {x 2, a}. 

,1 

Figure 1. 

In this paper we are concerned with the case K = K• where X is the epi- 

morphism of some augmented group system (G, X, x). Given any finite presen- 

tation ( x l , . . . ,  xnl r l  . . . . .  rm) for G a well-known algorithm from combinatorial 

group theory, the Reidemeister-Schreier method, enables us to find a presentation 

(possibly infinite) for K x. For the convenience of the reader we review the proce- 

dure for our situation. Much of our notation comes from [Ra]. The distinguished 

element x corresponds to some word w in the generators xi. We add a new sym- 

bol x and relator x = w to our presentation for G. (Such an addition is called 

a "Tietze transformation." See [LySc].) Next we replace each generator xi by 

ai = x i x  -• More rigorously, we introduce new symbols ai and (defining) 

relators ai = x~x-X(Xd; the new relators are equivalent to x~ = aix  • which 

we use to rewrite r l  . . . . .  r,~ in terms of x, al  . . . .  , an; finally, we eliminate the 

old symbols xi  and the relators ai = x i x  -x(~d.  (The last step can be thought of 

as the reverse of the type of Tietze transformation with which we began.) For 

each i = 1, . . . ,  n and j E Z, we denote the element x-Ja~xJ by the symbol ai,j. 

Clearly, each ai,j is an element of K• In fact, it is not difficult to see that  these 

elements generate K x. We obtain a set of relators for K x by rewriting each of 

x - J r l  x j ,  . . . ,  X-JrmX j as a word in the a~,j, a rewriting that  is possible because 

the exponent sum of x in it is zero. Notice that  the rewrite of x-J--trk xj+t is the 

just the result of adding t to the second subscripts of the rewrite of x-Jrkx  j. 

Example  1.3: Denote the group (x, a I x a x - 1  = a2) of the previous example by 

G. Using the Reidemeister-Schreier method one checks that  the kernel K x of 
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the abelianization homomorphism )~: G ~ Z is (ai la~ = ai+1,2 i �9 Z). Consider 

the assignment 
(1,2,3), if i is even; 

p(ai)= (1,3,2), i f i i s o d d .  

Since p(ai) = p(a2+l) for all i �9 Z, the function p induces a representation of K x 

in $3. The 1-skeletons of C 2 and ~2 are indicated in Figure 2. The corresponding 

subgroup H < K~ of index 3 is generated by 

a21a2j + l , a2i+ l a2 j ,  a2 ia2 ja2k ,  a2i+ l a2j+ l a2k + l 

where i, j and k range over all integers. The relations in K enable us to obtain 

the relatively smaller set of generators (a 3 I i �9 Z}. In fact, Kx is isomorphic to 

the group Z[1/2] of the dyadic rationals via the isomorphism a~ ~-~ 1/2 i. Under 

this isomorphism the subgroup H is simply 3Z[1/2]. 

Figure 2. 

In general, if p is any representation of K in S~, then the index of ~r(p) is 

the cardinality of the maximal subset of {1 , . . . ,  r} containing 1 on which p(K) 

operates transitively. Given two representations, Pl and P2, it is a simple task to 

determine whether the subgroups H1 = ~r(ol) and H2 = ~r(p2) are equal. First, 

we check whether H1 and /'/2 have the same index j in K. If that is the case, 

then we can assume without any loss of generality that pl and P2 are transitive 

representations of K in Sj. Now H1 and / / 2  are equal if and only if P2 = r o Pl 

for some inner automorphism r of St, conjugation by a permutation that fixes 1. 

2. The dynamical systems of (G,)r x) 

By a d y n a m i c a l  s y s t e m  we will mean a pair (X, a) consisting of a topological 

space X and a homeomorphism a: X --* X. A mapping f :  (X, a) -* (X ~, a ')  of 
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dynamical systems is a continuous function f: X --~ X '  for which f o a = a' o f .  

The dynamical systems (X, a) and (X' ,  a ~) are c o n j u g a t e  if also there exists a 

mapping g: (X ~, a ' )  ~ (X, a) such that g o f  and f o g  are the identity functions. 

Definition 2.1: Let r be a positive integer. The r e p r e s e n t a t i o n  shi f t  associated 

to (G, X, x) is the dynamical system (r ax) consisting of the space ~ of 

representations p: K• --~ S~ and mapping ax described by a~(p)(g) = p(x- lgx) ,  

for all g E K x. The topology on ~ is determined by the basis sets AYg 1 ..... ~ (p) = 

{P' I p'(gi) = p(g~), i = 1 ,  . . . ,  n}, for all p E ~ ,  gl, . . . ,  g, E K• 

We leave it to the reader to check that a= is indeed a homeomorphism. The 

term "representation shift" will be justified by Theorem 3.1 in the next section. 

A mapping h: ( G , ) t ,  x) ~ ( G ' , ) t  ~, x') of augmented group systems is a 

homomorphism h: G ~ G ~ such that h(x) = x' and ;~ = X ~ o h. It is easy to check 

that such a homomorphism induces a mapping h*: (r  a~) ~ (r a=) between 

the associated representation shifts. The mapping h* is described by p' ~ p~ o h. 

Definition 2.2: Let r be a postive integer. The s u b g r o u p  s y s t e m  associated 

to (G, ~, x) is the dynamical system ( ~ ,  ~ )  consisting of the space ~ of 

subgroups H < K x with [K~: H I _< r and mapping (r~: H H x - l H x .  The 

topology on ~ is determined by the basis sets 

A/g, ..... g . (H) = {H' l H ngp(gl ,  . . . ,  g,~) = H ' n g p ( g l ,  . . . ,  gn)}, 

for all H E ~ ,  gl, . . . ,  gn E K• (Here gP(gl, . . . ,  g,~) denotes the subgroup 

of K x generated by gl, - . . ,  g,~.) 

Again we leave to the reader the task of checking that the mapping is a homeo- 

morphism. The following proposition follows easily from Proposition 1.1. 

PROPOSITION 2.3: Let r be a positive integer. The function ~r: p ~-* H = 

{g E K• [ p(g)(1) = 1} induces a mapping from ( ~ ,  a~) onto ( ~ ,  ~ ) .  

The following is a consequence of Propositions 1.1 and 2.3. 

COROLLARY 2.4: Let ( G , ) ; ,  x) be an augmented group system and let r be a 

positive integer. Then the associated representation shift (ep~, ax) is finite (resp., 

countably infinite, uncountable) i f  and only if  the subgroup system ( ~ ,  ~x) is 

finite (resp., countably infinite, uncountable). 
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3. Shi f t s  o f  f in i te  t y p e  

Example 1.3 suggests that  if )/is a homomorphism of a finitely presented group G 

onto Z, then the kernel K x can be very complicated. However, any presentation 

of K x that  one obtains from the Reidemeister-Schreier method has structure 

that  suggests a dynamical system. We pursue this line of thought, and show that  

every representation shift is conjugate to a shift of finite type. 

Briefly we review some definitions and facts from symbolic dynamics. For 

more details, see [LiMa]. Let .4 be any finite set. We call ,4 an a l p h a b e t  

and its elements l e t t e r s .  We give ,4 the discrete topology and `4z the product 

topology. The shi f t  m a p  a on `4z is the function that  takes any p = (pj),  pj E 

`4, to p' = (p~), where p~ = Pj+I. Then (.4z, a) is a dynamical system; we 

refer to this system, or to the set A z itself, as the full A-shif t .  In particular, 

{0, 1, . . . ,  r - 1} z is called the full r -shif t .  

If X is a closed subset of `4z with a ( X )  = X ,  then (X, a)  is a dynamical 

system that  we call a s u b s h i f t  of `4z, or simply a shif t .  Again, we may call the 

set X a shift, with a understood. 

By a b lock  (over  ,4) we mean any finite sequence w of letters. If  the length 

of w is N, then w is said to be an N-block. The empty block e has length zero. 

A block w o c c u r s  in p E `4z if w appears as some subsequence of consecutive 

letters in p. Let /~ be a collection of N-blocks for some N. The set X of all 

p E A z such that  every N-block occurring in p is in B is a subshift. A shift of 

this kind is called a sh i f t  o f  f in i te  t y p e ,  and Y is its set of a l lowed  N-b locks .  

When N = 2 we may represent X by a directed graph F: the vertex set is `4, 

and there is an edge from Po to p~ if poPro is an allowed 2-block. The points of 

X are in one-to-one correspondence with the bi-infinite walks in F. Conversely, 

if F = (V, E)  is a directed graph with no parallel edges, then we obtain a shift 

of finite type X C V z in the obvious manner; X is called the v e r t e x  sh i f t  with 

graph F. We also obtain a shift of finite type )~ C EZ: elements of )(  are the 

bi-infinite sequences of edges that  form paths in F, and ed  is an allowed 2-block 

if the terminal vertex of e is the initial vertex of e ~. The shift )~ is called the 

e d g e  shi f t  with graph F. It  is easy to see that  X and .~ are conjugate shifts 

under the map that  takes the vertex sequence of a path  to the corresponding 

edge sequence. We remark that  we can define the edge shift as above even if F 

has parallel edges. The vertex shift and edge shift are unaffected if we "prune" 

F, removing any vertex v or edge e that  does not lie on any bi-infinite pa th  in F. 
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As an example of the above, let .4 = {0, 1, 2} and B = {00, 01, 10, 02, 20}. 

In Figure 3 we represent the associated shift X, first as the vertex shift of a graph 

F and then as the edge shift of another graph F'. 

F F' 

Figure 3. 

THEOREM 3.1: Assume that (G,)C, x) is an augmented group system. For any 

positive integer r, the associated representation shift ( ~ ,  a~) is conjugate to a 

shiR of ~nite type. 

Proof: Recall from the discussion preceding Example 1.3 that G has a presenta- 

tion of the form (x, a l , . . .  ,anl r l  . . . . .  rm) such that X(x) = 1 and x(a l )  . . . . .  

x(an) = O. Also, K• has a presentation 

(3.2) (ai,j] Rj, 1 < i < n, j e Z}, 

where the symbols ai,j denote generators x - j a i x  j, and Rj is 

( x - J r l x J , . . .  ,x-Jrm xj} written as words in the generators. Recall that Rq+t 

is obtained from Rq by adding t to the second subscript of every symbol in Rq. 

Assume that the words in Ro (and hence in each Rq) are reduced and cyclically 

reduced; i.e., no generator appears next to its invcrse, and no word in R0 ends 

with the inverse of the generator with which it begins. Replacing the original 

relators rj  by suitable conjugates x-tJrjx t~, w e  can assume that if R0 contains 

ai,j for some j ,  then Ro contains no ai5 with j < 0. Then replacing the original 

generators by suitable conjugates, we can assume that if Ro contains ai,j for some 

j ,  then Ro contains ai,o. (See IRa] for details.) If al,o occurs in Ro, then let Mi 

be the largest value of j such that  ai,j occurs. If ai,o doesn't occur in Ro, then 

let Mi be zero. 

From the presentation (3.2) of K x we obtain a presentation of some group 

Ho = (al,o, a1,1, . . . ,  ai,Ml, a 2 , o , . . . ,  an,Mn [ Ro)" 

Since in K x the generators of Ho might satisfy relators other than those that 

are consequences of R0, the group Ho is in general not a subgroup of K x. 

Nevertheless, Ho is valuable for studying the permutation representations of K x. 
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Abbreviate the set of generators {al,0, al,1 . . . .  , al,M1, a2,o, . . . ,  an,M, } by the 

symbol Ao, and let At = {al,t, al,l+t, . . . ,  al,Ml+t, a2,t, . . . ,  an,M,+,}.  Com- 

bining the presentations (At l Rt) as t ranges over Z reproduces the presentation 

(3.2) of K• 

Deleting al,M1, . . . ,  an,M., from A 0 produces a subset that we will denote by 

A0,1. Similarly Ao,2 is the result of deleting al,o, . . . ,  a~,o from A0. 

Let `4 denote the set of all representations of Ho in St. Such representations 

are precisely those functions Po: Ao ---* Sr such that the m equations po(ri) = 

id, ri E R0, hold in S~. In particular, A is a finite and computable set. Construct 

a directed graph F with vertex set ,4. Draw a directed edge from vertex Po to 
! a vertex p~ if and only if po(ai,j+l) = PO(i , j )  for each ai,j E Ao 1- The graph F 

determines a shift of finite type X with alphabet ,4. 

Any element p = (pj) of X determines a well-defined function Utez  At ~ S~ 

by ai,j ~ pt (ai , j - t )  if a~,j C At.  This function maps each relator x - t r j x  t in Rt 

to the element pt(rj)  which is the identity (since Pt is a homomorphism), and 

hence it induces a homomorphism from K = (At I Rt ,  t ~ Z) to S~. It is easy to 

check that  this determines a continuous shift-commuting function f from X to 

Conversely, any representation p: K ~ Sr determines a function Ao ~ S~ for 

each t by al,j ~ p(ai,j+t). The function maps each relator rj  in Ro to p ( x - t r j x t ) ,  

the identity element of S~, and hence it induces a homomorphism Pt from H0 to 

S~. Clearly, p = (Pt) is an element of the shift X, and we obtain a continuous 

shift-commuting function g: ((I),, a , )  ~ X. Since f and g are inverses, the shifts 

((I)~, ax) and X are conjugate. | 

In view of Theorem 3.1 we will regard elements of the shift X as representations 

p: K• ---* S~ without explicit mention of the correspondence. Note that under 

the correspondence the allowable N-blocks of X are the representations of the 

group H[O,N-1] = (Ao, . . . ,  A N - 1  [ Ro, . . . ,  R N - 1 )  in S.. 

Any presentation with the form (3.2) is called a f in i te  Z - d y n a m i c a l  p r e sen -  

t a t i o n  (presentation Z-dynamique finie) in [HaKe]. The results of this paper can 

be stated in terms of such presentations rather than augmented group systems. 

Example  3.3: Let G = (x, a [ xax  -1 -- a 2) and let X be the abelianiza- 

tion homomorphism. In Example 1.3 we displayed a particular representation 

of K x in $3. Now we will find all such representations. Recall that  K x = 
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(ai I a~ = ai+l,2 i 6 Z). Here M1 = 1, and Ho = (Ao I R0), where Ao = 

{a0, al} and Ro consists of the single relator ao = a~. (We have indexed the 

letter a with only its second subscript since its first subscript is always equal 

to 1.) The symmetric group $3 is generated by a = (1,2,3) and r = (1,2). 

There are exactly 6 representations of Ho in $3, corresponding to the 6 values, 

(id, id),(a, a2), (a 2, a), (id, ~-), (id, aT), (id, Cr2T), for (no, a l ) t h a t  respect 

the relator of Ho. The pairs become vertices of the directed graph F, with a 

directed edge from vertex v to vertex v r if and only if the second coordinate of v 

is equal to the first coordinate of v r. The graph F appears in Figure 4. 

"-,4. kid, 7" ;) 

Figure 4. 

From F we see that the shift (dp3, a~) is finite, consisting of only 3 elements. 

One element is a representation of K x in $3 corresponding to the constant 

sequence ( . . . ,  id, id, . . . )  E X. The subgroup of K• corresponding to this 

representation is K x itself. The other two elements are transitive representations 

of K x in $3 that form an orbit of period 2 in (r a~); i.e., they are sent to each 

other by a~. These two representations extend to G (see Proposition 3.5). Since 

one of the representations is the other composed with an inner automorphism of 

$3, conjugation by (2, 3), both determine the same subgroup of index 3, namely 

3Z[1/2]. The kernel K x has no subgroup of index 2. It will follow later from 

a more general result (Proposition 5.1) that K• has a subgroup of index r if 

and only if r is odd, and in that  case such a subgroup is unique, isomorphic to 

Although it is convenient for many arguments to represent X as the vertex shift 

of a directed graph F, we can also represent X as the edge shift of another graph 

that usually has fewer vertices than F and therefore is simpler to compute. 

The vertices of F correspond to functions P0:Ao,1 ~ S~. (When Ao,1 is empty, 

has a single vertex corresponding to the unique function Po: 0 -+ S~.) If Po is a 

representation of Ho in S,, we draw a directed edge labeled by P0 from the vertex 

labeled by POlAo., to the vertex labeled by plolAo.1, where p~o(aij) = po(ai,j+l) 
for all al,j E A0,1. Notice that the edges of F correspond to the vertices of r .  

Unlike F, the directed graph F might have parallel directed edges joining a pair 
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of vertices. (This occurs when some M~ is zero so that no a~j appears in Ao,z or 

Ao,2.) We illustrate with an example that  shows that the set of representations 

of K x in S~ can be considerably larger than the set of representations of G in S~, 

in contrast to the previous example. 

Example  3.4: Let G = (x, al,  a2 I x - l a 2 x  = a-[la2az) and consider the 

homomorphism ~: G --* Z described by x ~-* 1, az ~-~ 0, and a 2  ~ 0. It is 

clear from the form of the relation x - l a ~ x  = a71a2al that any function from the 

set of generators {x, az, a2} into the symmetric group $2 = {id, a} induces a 

homomorphism. Hence there are exactly 8 representations of G in $2. In order to 

find all representations of K• we first apply the Reidemeister-Schreier method 
- - I  2 . 2 to obtain K x = ~a16,a2,jl a z j a 2 j a l , ~  = al, j+l).  Then M1 --- 1, M2 -~ 0, and 

H0 = (Aol Ro), where Ao = {al,0, el,l ,  a2,0} and Ro consists of the single relator 

al,oa2,oal,o-1 2 = a2,1. The directed graph F has 2 vertices, corresponding to the 

functions from Ao,z = {al,o} to $2. Again from the form of the relator there are 

8 representations Po: H0 --* $2, corresponding to ordered triples of elements in 

$2, the values of (al,0, a l j ,  a2,o). The eight triples become edge labels. The di- 

rected graph F appears in Figure 5. From it we see that (@2, a~) is uncountable. 

Hence K x has uncountably many representations in $2 and uncountably many 

subgroups of index 2 by Theorem 3.1 and Corollary 2.4. 

hd,a, id)  

�9 ~ ~d ~,~) ~ ~ ,  

" ' ~ "  ~ ' ~ (  la "d ldl " - ' ~ ' - ' ~ " "  ' 

(Id,:d,id) (a, id, a) ca, c~, C~) 

Figure 5. 

When does a representation of p: K x --* S~ extend to a representation of G in 

S~? Proposition 3.5 gives a complete answer. Corollary 3.6 provides a necessary 

condition in terms of (@~, a~). 

P R O P O S I T I O N  3 . 5 :  A representation p: K x ~ S~ ex tends  to a representation o f  

G in S~ i f  and only i f  there exists  an dement  ~- ~ S~ such that  -r-Zp(a~j)~ - = 

p (a~ j+z ) , l  < i < n, j 6 Z. 

Proo[." Suppose that p: K• --* S~ extends to a representation p: G ~ S~. Let 

v = p(x) .  Applying p to each side of the relation x - l a i , i x  = a~j+l,  we see that 

T- lp(a~6)T  = p(a~j+l). 

Conversely, if p is a representation of K• in S~ and there exists an element 
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r E S~ such t h a t  7 - 1 p (  ai,j )T = p(ai,j+l), 1 < i < n , j  E Z, then we can extend p 

to all of G by defining p(x) to be T. | 

COROLLARY 3.6: I r a  representation p: K x --, Sr extends to a representation of  

G in S~, then p is a periodic point  of ((I)~, a~); i.e., a~(p) = p for some positive 

integer d. 

Proof: Let d be the order of T in S~. Since p(ai,j) = r -dp (a id )T  d = p(aid+d), 

it follows that  ad(p) = p in the shift ((I)~,a~). | 

We remark that  periodic points of ((I)~, ax) need not extend to representations 

of G in S~. For example, one easily checks in Example 3.4 that the representation 

corresponding to p = (Pt), where 

(id, a, id), i f t  is even, 
P t =  (a, id, id), i f t i s o d d ,  

does not extend to a representation of G in any symmetric group S~. However, 

it is possible to characterize the periodic points of a representation shift. If 

(G, X, x) is an augmented group system, then for any positive integer d we let 

Kx,  d denote the kernel of the composition G --, Z ~ Z/(d),  where the second 

mapping is the natural quotient projection. 

PROPOSITION 3.7: A representation p: K x --* S~ is a periodic point  o f  (r  a~) 

i f  and only i f  p extends to a representation of  Kx,d for some d > O. 

Proo~ Assume that (aidl Rj, 1 < i < n, j E Z) is a presentation for K• It is 

not difficult to see that K• has presentation (y, ai,jl Rj ,  y - l a i , j y  = ai,j+d, 1 _< 

i <_ n , j  E Z) in which y represents the element x d E G. If a~(p) = p, then we 

can extend p to Kx,d by defining p(y) = id. Conversely, if p: K x --* S~ extends to 

a representation of Kx,d in S~ then, denoting the extension by p, we must have 

P(Y)- lp(ai , j )P(Y)  = P(ai,j+d) for all al, j .  Let q be the order of p(y) in S~. Then 

adqP(ai, j)  = p(ai,j+dq) = p ( y ) - d q p ( a i j ) p ( y ) d q  = p(ai , j ) .  Hence p is periodic. 
| 

4. The  B i e r i - N e u m a n n - S t r e b e l  invariant 

Again let G be a finitely presented group and let X be an epimorphism with kernel 

K x. Given a finite presentation of G, we obtained in Section 3 a presentation 

(Aol Ro) of a certain group H0. Although, as we remarked, Ho is not necessarily 
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a subgroup of K• some quotient group H~ is. In [Ra] Rapaport describes how 

one recovers G using H~: Let H~, 1 be the subgroup of H~ generated by A0,1, and 

let H~, 2 be the subgroup generated by Ao,2 (see the proof of Theorem 3.1 for the 

definitions of A0,1 and A0,2). The mapping a~,j ~ al,j+l induces an isomorphism 

r H~, 1 -=* H~, 2. The group G can be described as (x, H~)[ x - l h x  = r h E 

H~,1) (where, abusing notation in the usual way, we write H~ instead of specific 

generators and relators for that group). Connoisseurs will recognize G as an HNN 

extension of H~. We recall that a group G is an HNN e x t e n s i o n  of a group B 

if there exist subgroups S and T of B and an isomorphism r S ~ T such that 

G = (x, B [ x - l s x  -- r s E S), where x is a generator not contained in B. 

In this case, B is called the base  of the HNN extension, while S and T are the 

a s soc i a t ed  subg roups .  (See [LySc] for additional details.) If it is the case that  

S coincides with the base B, then the HNN extension is said to be a scend ing .  

If G is any finitely presented group and )~: G -~ Z is an epimorphism, then G 

can be described as an HNN extension with finitely generated base B contained 

in g x (see [BiSt].) In [BiNeSt] Bieri, Neumann and Strebel show that if one such 

HNN extension describing G is ascending, then all are. Indeed, they show that 

this is the case if and only if the class [X] in (Hom(G,R)  - {0})/R+~ where R+ 

acts by multiplication, lies in a certain subset E. The subset Z has a geometric 

interpretation in terms of the Cayley complex of G, and it has been generalized 

by Renz [Re] to a chain of "higher geometric invariants." 

THEOREM 4.1: Assume that (G, X, x) is an augmented group system. If[x] E E, 

then for any r the associated shift ( ~ ,  a~) is finite. Consequently, K x contains 

only finitely many subgroups H with index IKx: HI _ r for any r < cx~. 

Notice that the hypothesis of Theorem 4.I makes no mention of the distin- 

guished element x. In fact, Theorem 4.1 is a result about pairs (G, X) such that 

G is a finitely presented group and )~: G ~ Z is an epimorphism. We will call 

such a pair a g r o u p  sy s t em.  

Before proving Theorem 4.1, we present an application. Recall that  a group G 

is r e s idua l ly  f in i te  if the intersection of all finite index normal subgroups of G is 

trivial. Equivalently, G is residually finite if given any nontrivial element g E G, 

there exists a homomorphism from G to some finite group such that  g is not 

in the kernel. A group is hop f i an  if every homomorphism from the group onto 

itself is an automorphism. A well-known theorem of Malcev states that  every 
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finitely generated, residually finite group is hopfian. The proof of the theorem 

(see page 197 of [LySc]) requires that the group be finitely generated only so that  

one knows that the number of subgroups of an arbitrary finite index r is finite. 

The following corollary is immediate. 

COROLLARY 4.2: Assume that (G, X) is a group system. I f  G is residually finite 

and IX] ~ E, then K x is hopfian. 

Any knot group G together with an abelianization homomorphism :(: G ---, Z 

comprises a group system. In this case, the kernel K• is simply the commutator 

subgroup G I. 

QUESTION 4.3 ([GoWh]): I f  G is the group of a knot in S a, is the commutator 

subgroup G' hopfian? 

Question 4.3 provided the original motivation for our paper. In view of the 

fact that knot groups are residually finite [Th], W. Whitten and the first author 

had hoped to provide an affirmative answer to Question 4.3 by showing that the 

commutator subgroup of any knot group has only finitely many subgroups with 

an arbitrary finite index. The techiques of this paper, however, show that the 

commutator subgroup of the group of the knot 52 (Figure 6) has uncountably 

many subgroups of index r whenever r > 3. In order to see this, one applies the 

Reidemeister-Schreier method to a Wirtinger presentation 

( X l , X 2 ,  X3,X4, X51 Xl = X2X5X2 1, X3 ---- X5X2X5 1,x4 = XlX3Xl  1,x2 = X4XlX4 1) 

~- (x2, xsI x2xsx~ l x~x~x-~ l z~x~ l xT~ l x sx~  l x~ l x2x~ b 

~-- (x, a I x a 2 x - l x 2 a - 2 x - 2 x a x - t a - 2 ) ,  

where x = x2 and a = x - l x s ,  obtaining the following presentation for the 

commutator subgroup G ~, 

(ai I 2 - 2  - 2  ai+lai ai+lai+2}. 

The directed graph F that describes the representation shift ((I)4, a~) is large, but 

we need only concern ourselves with the detail in Figure 7 that shows two cycles. 

Any bi-infinite path in F that travels at least once around each cycle corresponds 

to a transitive representation of G' in $4. By Proposition 1.1 we conclude that 

G ~ contains uncountably many subgroups having index 4. Moreover, since each 

permutation in the inner cycle fixes 4, we can adjoin a third cycle, identical to 
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the second but with '5' replacing '4', and thereby obtain a detail of the directed 

graph describing (4)5, a~) (see Figure 8.) Again, any bi-infinite path that travels 

at least once around each cycle corresponds to a transitive representation of G I, 

this time in $5. This process can be repeated in order to obtain uncountably 

many subgroups of G I having index r, for any r > 4. Interestingly, G' has only 

finitely many subgroups of index r < 4 (cf. Question 7.1). 

Figure 6. The knot 52. 

((I .2,3),(I,3)(z,4)) . - - )  ((1,3X2,,9,(I,~,.~) 

f 
((I),(i ,s ~ ((I 2 3)A1x,) 

? L 
((; .~2)al)) ~ ((I),(12,2)) 

\ 

((12,4).(1)) 

,L 
(('),(: 4.~)) 

J 
(( 1,3"~2.4),( i .3 21) 4 - - - -  (( i ,.~ .2),i I ,  ~'(7, ..~:,) 

Figure 7. 

Proof of Theorem 4.1: Assume that G is a finitely presented group and )~: G ~ Z 

is an epimorphism with kernel K• Let X be the shift of finite type described in 

the proof of Theorem 3.1. If IX] E ~, then the associated subgroup H~, 1 coincides 

with the base H~. Equivalently, for each i, 1 < i < n, there is a word wi in the 

generators ai,j E A0,1 such that ai,M~ : wi is a consequence of the relators 

[Jtez Rt of K• Choose a nonnegative integer q large enough so that ai,M~ : Wi 

in H[_q,q], 1 < i < n. Suppose that  p = (pj) is any element of X. For any j 

the (2q-F 1)-block p j_q , . . . ,  pj+q corresponds to a representation of Hi_q,ql in St. 

Since  ai ,Mi  : w i ,  1 <~ i < n in  H[_q,q], t h e  va lues  p j ( a l , M 1 ) , . . . , P j ( a n , M , , )  are  

uniquely determined by the values pj(ai,j), ai,j E Ao,1. In terms of the pruned 

graph F representing X (see discussion following Example 3.3) this means that 
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any vertex has exact ly  one directed edge leaving it. Hence the shift X is finite. 

| 

((! :,~),(1,3~(2 ~)) ~ ((1,3XT-,~,(1,Z~S)) 

/~(: .z.a),(1,3X:,4)) ~ ~,(1,3• ,z.,)) 

C(1),(1,2,3))  .-..--~/,( 1.2,3) ,( 1 )) ((i,2.4),t'i)) ((1,2,5"),(I)) 

((Lz2).~1)) .(---- ((I),~i ,3,.')) (0),~:,~.,:)) (0~,,I,5,-)'; 

0,3X2,~),(!,32)) ~ I .I /g-" 

((L3X2.S),(L~.~)) ( (0 .s,:'),(L3X2.S)) 

Figure 8. 

5. The  Baumslag-So l i tar  groups 

In 1962 Baumslag  and Solitar proved tha t  the group 

G(m, n) = (x, a I xa'~x-1 = a'~) 

is nonhopfian whenever m,  n >_ 2 are copr ime [BaSo]. For any integers m and 

n, we define X: G(m, n) ---, Z to be the h o m o m o r p h i s m  such tha t  X(x) = 1 and 

x(a) = 0. The  kernel K(m, n) of X has presenta t ion (ai I aN = a~+l). We apply  

the techniques of Section 3 in order to prove the following. 

P R O P O S I T I O N  5.1  : 

(i) Assume that (m, n) = 1. Then K(m, n) has a subgroup of index r if and 

only (r, m)  = (r, n) = 1. In this case, there is exactly one such subgroup. 

(ii) Assume  that (rn, n) r 1. I f r  is g rea te r  than or equaI to the sma/ les t  p r ime  

divisor of  both m and n, then K (m, n) has uncountably m a n y  subgroups 

of index r. 

Proof'. From the relator  a N = a '~ ,~2 m,  ,~2 i+1 we have a i = a i +  1 = ai+2, and by induction 

1 ~  k ,).1. k 
(5.2) a~ = ai+ k 

for all k _> 1. Let p be a t ransi t ive representat ion of K(m, n) in S~, and denote 

the pe rmu ta t i on  p(ai) by p~. Since S~ is finite, p, = ps+t for some s and some 
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m t ~ 
t > 1, and hence Ps = p~ by (5.2). Let l be the order ofp~  in S~. T h e n l  

divides m t - n t. Since (m, n) = 1, we must  have (l, m) = (l, n) = 1. 

We claim tha t  all of the permutat ions  pi have order I. From this claim it 
m q  follows that  we can solve the equation p~ = P~+I in order to obtain Pi+l = Pi , 

n V  where q is the inverse of n modulo l; or, going backwards, pi = P~+I, where v is 

the inverse of m modulo  I. 

Consequently, all of the Pi are uniquely determined as powers of the single 

permuta t ion  Po- Since the representat ion p is transitive, Po must  act  transit ively 

oil {1 . . . .  , r}, so l -- r and, up to inner au tomorphism of St,  we can assume 

that  Po = (1, 2, . . . ,  r). From this and the comment  concluding Section 1 follows 

the necessity of the condition (r, m) = (r, n) = 1 as well as the uniqueness of the 

index r subgroup when the condition is met. 

We now prove the claim. It suffices to show that  if some Pi has order l, with 

( l ,m)  = ( l ,n )  = 1, then Pi+l and Pi-1 also have order I. We appeal to the 

following number- theort ic  lemma, the proof  of which is left to  the reader. 

LEMMA 5.3: Suppose  that g is any finite-order element  of  a group. I f  the order 

o(g ~) is equal to b, and i f (a ,  b) = d, then o(g) = aldb for some al dividing a/d.  

Continuing the proof of Proposi t ion 5.1, assume tha t  Pi has order l. Since 

( l , m )  = 1, we have l = o(p'~) = o(p~+l). Using Lemma 5.3, o(p~+l) = n d ,  

where n l  divides n. Then  ni l  = o(pi~+l) = o(p~+2). Again using the lemma, 

o(pi+2) = n2n~l, where n2 divides n/n1 .  Continuing in this manner ,  we find tha t  

the order of Pi+k is divisible by n~. Since the order is bounded by r, we must  

have n l  = 1 and o(pi+l) = 1. The same argument ,  exchanging the roles of m and 

n, shows that  o(pi-1)  = I. This completes the proof of (i). 

We now prove (ii). Let p > 1 divide m and n, and suppose tha t  r > p. 

Let S be the set of elements of Sr tha t  are products  of disjoint p-cycles. We 

include the "empty product"  (1), so the cardinali ty of S is greater than 1 even 

if r = p -- 2. Then ((I)~, a~) contains the full shift on the elements of S. It  is 

easy to see that  uncountably  many  elements of this shift correspond to transit ive 

representations of  K ( m , n )  in & .  Using Proposi t ion 1.1 we find tha t  K ( m , n )  

contains uncountably  many subgroups of index r. | 

6. An  entropy invariant for (G,)C) 

In  Section 4 we saw tha t  if (G, X, x) is an augmented  group system, then some 
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conclusions about the associated representation shifts ( ~ ,  a , )  can be deduced 

from the pair (G, X) alone. Is the conjugacy class of the shift (Or, a~), in fact, 

independent of the choice of distinguished element x? Example 6.1 shows that 

the answer is no. 

E x a m p l e  6.1: Consider the augmented group system (G, ~, x), where G is the 

free group on x, a, and X: G --~ Z is the epimorphism determined by x ~-* 1, a H 

0. The kernel K x is free on generators ai, i E Z, where ai denotes x - l a x  i. Clearly 

the associated representation shift (~3, a~) is conjugate to the full 6-shift. This 

shift has exactly 6 fixed points, corresponding to the representations p: ai ~ 7r, 

for all i E Z, where 7r is any permutation in $3. 

Now consider the augmented group system (G, X, y), where y = x a x - l a - l x .  

In order to study the associated representation shift (~3,ay) ,  we first apply a 

sequence of Tietze transformations (see [LySc]) to the presentation (x, a I } for G: 

(x ,  al ) ~- (x,  a, b, y[ b = a x - l a - l x ,  y = xb) ~- (a, b, Yl b = a b y - l a - l y b - 1 ) .  

Next we apply the Reidemeister- Schreier method to the last presentation. We 

obtain a new presentation (ai, bi] bi = aibia~_~lb~ 1) for K x ,  where ai now denotes 

y - i a y i ,  and likewise bi denotes y - i b y i .  It is easy to check that (r ay) has 6 fixed 

points corresponding to the representations p: ai ~ r ,  bi ~-* (1), where rr E $3. 

However, (~3, ay) has 6 more fixed points: 

ai ~-* (1, 2), bi ~-* (1, 2, 3), 

ai ~-* (2, 3), bi ~ (1, 2, 3), 

a, (1, 3), b, (1, 2, 3), 

a i d ( i , 2 ) ,  bi H ( 1 , 3 , 2 ) ,  

ai ~-+ (2, 3), bi ~-* (1, 3, 2), 

ai ~ (1,3), bi ~-+ (1,3,2). 

Since conjugate shifts have the same number of fixed points, (r as) and (r O'y) 
are not conjugate. 

Def in i t ion  6.2: Shifts of finite type X and X '  are f in i t e ly  eq u iv a l en t  if there 

exists a shift of finite type that maps onto each by mappings that are finite-to-one. 

Finite equivalence is a weaker form of equivalence than conjugacy [LiMa]. 

Nevertheless, it is a useful notion. The e n t r o p y  of a shift can be defined as 
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lim sup 1/N log I BNh where I BNI is the number of allowable N-blocks of the shift. 

When the shift is described by a directed graph F, its entropy is log ~, where )~ 

is the Perron eigenvalue of the adjacency matrix of F (see Chapter 4 of [LiMa] 

for details). Conjugate shifts have the same entropy. In fact, finitely equivalent 

shifts also have the same entropy. 

THEOREM 6.3: Assume that (G, X, x) and (G, X, Y) are augmented group systems 

that differ only by the choice of distinguished elements x and y. Then for each 

r > 0, the associated shifts (r a=) and (r ay) are tlnitely equivalent. 

Proof." Recall that  ~ is the set of representations p: K x ~ S~. The mappings 

a= and ay are defined by a=p(g) = p ( x - l g x )  and ayp(g) = p (y - lgy ) ,  for all 

g E K• We can write y = xb for some element b E K• The proof of the 

following lemma is straightforward, and we leave it to the reader. 

LEMMA 6.4: For n > 0, 

O'~p(g) -~ [ p ( b n _ l . . .  blbo)]-l(Tnp(g)p(bn_l.. ,  bib0)  , 

O ' y n p ( , . q )  = p ( b n _ l  . . . b l b o ) o ' 2 p ( g ) p [ ( b n - l  . . . blbo)] -1, 

where bn = x-'~bx'L 

Define O~ to be the product space ~ x S~, where S~ has the discrete topol- 

ogy, and define T: O~ --* O~ by T(p, ~) = (a=p, p(b)r). One easily checks 

that T is continuous. (The form of the mapping is a "skew product" with 

base ((I)r, a=).) Note that Tn(p,~r) = (a'~p,p(b,~-l . . .  bo)~r) and T - n ( p , ~ )  = 

(a~np, [p(bn-1. . .  bo)]-l~r), if n > 0. It follows that the first-coordinate projec- 

tion Pl: O~ --* r  induces an r!-to-1 mapping from (0~, T) onto ((I)~, a=). Also, 

f :  Or -~ (I)~ defined by f (p ,  7r) = ~r-lp~r induces a mapping from (0~, T) onto 

( ~ ,  a~). The mapping f is also r!-to-1 since f - l ( p )  = {(~rpTr-1, ~r) I 7r E S~}. 

In order to complete the proof of Theorem 6.3 it suffices to show that the 

dynamical system (O~, T) is conjugate to a shift of finite type. As in the proof 

of Theorem 3.1, obtain a presentation (ai,j I Rj)  for K x corresponding to a 

presentation (x, ail R0) for G. Map O~ to a shift with alphabet {(Po, 7r) I P0 is a 
i function from A0 to S~, 7r e St} by sending (p, ~r) to (pi, ri),  where Pi = a=plAo, 

~r0 = ~r, and (inductively) lri+l -- p(bi)Tri. If b = bo = w(a_t,  . . . ,  at) is a word 

in the ai, then bi = w(ai- t ,  . . . ,  ai+l) and p(bl) = w(pi- l ,  . . . ,  Pi+l). Thus the 

condition 7ri+l = p(bi)~r is a finite type condition (i.e., a condition that one can 
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verify by examining blocks of a fixed length), and the image of O~ is a shift of 

finite type. It  is easy to check that  this mapping is a conjugacy. | 

Remark 6.5: The above proof shows more than the statement of Theorem 6.3. 

There exists a shift of finite type that  maps constant-to-one onto each of ( ~ ,  as)  

and (r ay). 

Definition 6.6: A g r o u p  s y s t e m  is a pair (G, ~() consisting of a finitely 

presented group G and an epimorphism ~(: G --* Z. Two group systems (G,)~)  

and (G', X') are i s o m o r p h i c  if there exists a group isomorphism h: G --* G' 

such that  X -- X' o h. 

COROLLARY 6.7: Let (G, ~, x) be an augmented group system, and let r be a 

positive integer. The entropy h( ~ )  of the associated representation shift ( r a~) 

is an invariant of the group system (G, ~); i.e., the entropy depends only on the 

isomorphism class of the group system. 

7. Q u e s t i o n s  a n d  f u r t h e r  d i r e c t i o n s  

PROBLEM 7.1: Characterize those augmented group systems (G, )~, x) such that 

(r a~) is finite for all r. 

Corollary 6.7 can be used to define a sequence of "entropy invariants" for n- 

knots. An n-knot is a smoothly embedded n-sphere K in the (n + 2)-sphere S '~+2. 

Here n-knots are assumed to be oriented. Let N ( K )  be a neighborhood of K 

that  is diffeomorphic to S '~ • D 2. The closure X ( K )  of S n+2 - N ( K )  is called 

the e x t e r i o r  of K.  Two n-knots are e q u i v a l e n t  if there is a diffeomorphism 

of S n+2 to itself that  sends one n-knot to the other (preserving orientations.) 

Equivalent n-knots are regarded as the same. (See [Ro] for additional background 

information.) An n-knot i n v a r i a n t  is a quantity that  is defined for an n-knot 

and depends on the n-knot only up to equivalence. As in [Sill every n-knot 

K determines an augmented group system: Let G = r l ( X ( K ) ,  *), where the 

basepoint �9 lies in the boundary OX(K),  and let x be the element of G represented 

by a simple closed curve m C OX(K) with its orientation induced by K (the 

curve m is called a m e r i d i a n  of K).  By the uniqueness up to isotopy of tubular 

neighborhoods, the element x is well defined by K.  Letting X: G ~ Z be the 

abelianization homomorphism that  sends x to 1, we obtain an augmented group 



250 D.S. SILVER AND S. G. WILLIAMS Isr. J. Math. 

system (G,)~, x). Associated now to K is a sequence {(I)r(K)}~= 1 of shifts and 

a corresponding (nondecreasing) sequence of entropies {h~(K)}~= 1. 

QUESTION 7.2: How do the invariants h~( K) re/ate to previously defined n-knot 

invariants (e.g., Alexander module, knot entropy [Si2])? 

The invariants h,(K) are computable from any knot diagram for K when K 

is a 1-knot. We will investigate this in a future paper. 

Reversing the orientation of K produces a new (oriented) n-knot R K .  The 

augmented group system of R K  is (G, -)~, x - l ) .  It is not difficult to see that for 

any r > 1 there is a bijection from (I)~(K) to (I)~(~K), sending every bi-infinite 

word (pj) to its "reverse" (p_j). From this it follows that the entropies hr(K) 

and h~(~K) are equal, and hence h~(K) is an invariant of the unoriented n-knot 

K. However, the shifts (I)~(K) and (I)~(T/K) need not be conjugate. 

QUESTION 7.3: How often do the shifts {(I)~(K)}~=~ distinguish an n-knot K 

from its inverse 7~K ? 

Growth rates of finitely generated group automorphisms were used in [Si3] in 

order to distinguish n-knots K from their inverses. While the techniques used 

there are very effective, they apply only in the case that the commutator subgroup 

of Irl (X(K))  is finitely generated, and they can be effective only when n is greater 

than 1. 
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